Smoothing quantile regression for a distributed system

نویسندگان

چکیده

Quantile regression has become a popular alternative to least squares for providing comprehensive description of the response distribution, and robustness against heavy-tailed error distributions. However, nonsmooth quantile loss poses new challenges distributed estimation in both computation theoretical development. To address this challenge, we use convolution-type smoothing approach its Taylor expression transform nondifferentiable function into convex quadratic function, which admits fast scalable algorithm perform optimization under massive high-dimensional data. The proposed estimators are computationally communication efficient. Moreover, only gradient information is communicated at each iteration. Theoretically, show that, after certain number iterations, resulting estimator statistically as efficient global without any restriction on machines. Both simulations data analysis conducted illustrate finite sample performance methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On kernel smoothing for extremal quantile regression

Nonparametric regression quantiles obtained by inverting a kernel estimator of the conditional distribution of the response are long established in statistics. Attention has been, however, restricted to ordinary quantiles staying away from the tails of the conditional distribution. The purpose of this paper is to extend their asymptotic theory far enough into the tails. We focus on extremal qua...

متن کامل

Local Composite Quantile Regression Smoothing for Harris Recurrent Markov Processes.

In this paper, we study the local polynomial composite quantile regression (CQR) smoothing method for the nonlinear and nonparametric models under the Harris recurrent Markov chain framework. The local polynomial CQR regression method is a robust alternative to the widely-used local polynomial method, and has been well studied in stationary time series. In this paper, we relax the stationarity ...

متن کامل

Variance estimation in censored quantile regression via induced smoothing

Statistical inference in censored quantile regression is challenging, partly due to the unsmoothness of the quantile score function. A new procedure is developed to estimate the variance of Bang and Tsiatis's inverse-censoring-probability weighted estimator for censored quantile regression by employing the idea of induced smoothing. The proposed variance estimator is shown to be asymptotically ...

متن کامل

EXTREMAL QUANTILE REGRESSION 3 quantile regression

Quantile regression is an important tool for estimation of conditional quantiles of a response Y given a vector of covariates X. It can be used to measure the effect of covariates not only in the center of a distribution, but also in the upper and lower tails. This paper develops a theory of quantile regression in the tails. Specifically , it obtains the large sample properties of extremal (ext...

متن کامل

Local composite quantile regression smoothing: an efficient and safe alternative to local polynomial regression

Local polynomial regression is a useful non-parametric regression tool to explore fine data structures and has been widely used in practice. We propose a new non-parametric regression technique called local composite quantile regression smoothing to improve local polynomial regression further. Sampling properties of the estimation procedure proposed are studied. We derive the asymptotic bias, v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neurocomputing

سال: 2021

ISSN: ['0925-2312', '1872-8286']

DOI: https://doi.org/10.1016/j.neucom.2021.08.101